
Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

1

Parallel and Distributed Computation of a Fingerprint Access Control
System

Bopatriciat Boluma Mangata1*, Kadima Muamba2, Fundji Khalaba3, Bukanga Christian Parfum4,

Kisiaka Mbambi5
 1,3,4 Faculty of Science and Technology, University of Kinshasa, Kinshasa, D.R.Congo

2,5 Faculty of Computer Science, Reverend Kim University, Kinshasa, D.R.Congo

Corresponding author: * bopatriciat.boluma@unikin.ac.cd
Received Date: 25 February 2022

Accepted Date: 27 April 2022
Revised Date: 10 May 2022

Published Date: 1 September 2022

HIGHLIGHTS

● Design of a fingerprint-based access control system to secure premises.
● Evaluation of the execution time of a fingerprint-based access control system, sequential and parallel

approach.
● Comparison of the execution time of a fingerprint-based access control system to secure premises,

sequential and parallel approach.

ABSTRACT
This work evaluates the runtime performance of a single-mode biometric recognition system for fingerprint-
based access control to secure premises. To speed up the computation time in this system, we resorted to
parallel programming, targeting more loops in the verification module. Our approach would therefore be
to parallelize all loops that are computationally intensive during the verification of fingerprints in the
database. On this, we exploited Microsoft's Task Parallel Library, specifically exploiting the for and for
each loop. On the test set performed in sequential and parallel versions in the different data sizes, namely
50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, and 600, we can state that the results obtained by the
sequential and parallel implementations of our performance test programs allowed us to determine the best
approach. Therefore, it is very clear that the sequential program is too greedy in terms of computation time
compared to the parallel program which minimizes the computation time.

Keywords: Task Parallel Library, Biometrics, Fingerprint, Access control, Parallel computing.

INTRODUCTION

Problem

Each technological progress opens the horizon to new needs. Applications are becoming very demanding
in terms of computing time and memory space, especially real-time and simulation applications. Parallelism
has always been a possibility to meet this demand for performance (Fryza, Svobodova, Adamec, Marsalek,
& Prokopec, 2012).

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

2

The real problems that arise, as far as verification in a student access control system in an institution is
concerned, especially when we have a mass of information in the database, are slow, high computation
time, which makes verification tedious (Williams-Young, De Jong, Van Dam & Yang, 2020).

Thus, in order to motivate the continuation of this work, questions of the kind listed below will not be ruled
out:

✔ What are the most efficient methods we can apply to reduce the computation time in an access
control system?

✔ How can we optimise the runtime computation problem in a fingerprint-based access control
system?

These issues are the real problems that we will examine in the following.

Assumptions

To solve these problems, the optimal solution we propose in this work is to exploit parallel programming,
with the aim of improving the capabilities of the parallel computing verification module through the
implementation of parallel loops.

More precisely, we will design a parallel computation verification module based on Microsoft's Task
Parallel Library, exploiting more precisely the loop for and loops for each.

Objective

The general objective of this work is to design a tool that will optimize the computation time of an access
control management system.

Interest of the subject

The interest of such an approach is to make a major contribution to the scientific community, by providing
them with a logical approach to optimizing the runtime performance of an access control system for
premises secured by fingerprints.

PARALLEL PROCESSING

Some general information

Parallel processing is a form of information processing that allows the exploitation of concurrent events at
runtime. These events are located at several levels: at the program level, at the procedure level (coarse-
grained parallelism), at the instruction block level (medium-grained parallelism) or within an instruction
(fine-grained parallelism) (Reumont-Locke, 2015)

Parallelism is the fact of making several processors cooperate with the aim of accelerating the resolution of
a single problem, improving computing performance, increasing the size of the problems to be solved,
producing machines with a good cost/performance ratio (Tavara, Schliep, & Basu, 2021).

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

3

The introduction of parallelism within a program can be done at the level of procedures or even loops of
the procedure (Ocaña, & de Oliveira, 2015). It requires the decomposition of the program into tasks, the
search for dependency relationships between these tasks by constructing a directed graph, whose vertices
represent the tasks and edges represent the dependencies between the tasks, called a "dependency graph",
and the parallel programming of independent tasks (Abdellatif, M. (2016)).

Presentation of the work

This work is in the context of parallel application programming which requires high computational
capacities. Its objective is to study the execution time performance of an access control system for premises
secured by fingerprints (Miao, Tian, Peng, Hossain & Muhammad, 2017)

To do so, we proceed as follows (Bopatriciat Boluma Mangata et al., 2022):

✔ We take our fingerprint verification program, in its sequential performance test version, on a set
of six hundred individuals.

✔ We run this sequential version on the different data sizes, namely 50, 100, 150, 200, 250, 300,
350, 400, 450, 500, 550, and 600. The aim here is to evaluate the execution times of each data
size by responding to the sequential test program.

✔ We parallelize our test program, namely the fingerprint verification program, using the
parallelism of the for and foreach loops of the Task Parallel Library.

✔ We run this parallel version on the different data sizes, namely 50, 100, 150, 200, 250, 300, 350,
400, 450, 500, 550, and 600. The aim here is to evaluate the execution times of each data size by
responding to the parallel test program.

✔ We interpret the results obtained from the sequential and parallel implementations of our
performance test programs to determine the best approach.

SYSTEM IMPLEMENTATION AND ARCHITECTURE

Implementation

In this last part, we are interested in the tools used for the realization of our application as well as the main
interfaces of the application.

Choice of hardware and software

Hardware environment

In order to carry out our research project, we have used the following materials (Bopatriciat Boluma
Mangata et al., 2021):

✔ Three laptops (LAPTOP) from the HP EliteBook brand.

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

4

Here are the characteristics of this machine:
❖ Mark : HP EliteBook ;
❖ Operating system: Windows 8.1 Professionnel 64 bits ;
❖ Processor : Intel (TM) Core i5 1,70 GHz, ~2,40 GHz ;
❖ RAM Memory capacity : 8 Go ;
❖ Hard disk capacity: 300 Go.

These computers contain a biometric application in C# that allows instructions to be given to the Arduino
card via the serial port and a database replicated in three different instances representing our three sites.

Hardware architecture of the system

The material architecture of the project is as follows (Bopatriciat Boluma Mangata et al., 2021):
✔ Personal Digital, a fingerprint reader, communicating through the USB port ;
✔ A computer, containing a biometric application in C# that allows instructions to be given to the

Arduino card via the serial port and a database replicated in three different instances representing our
three sites.

✔ The Arduino card, which is programmed to analyse and generate electrical signals, in order to carry
out automatic door opening and closing tasks (access control).

✔ TOWER PROTM Micro Servo 9g SG90, a stepper motor that will allow us to make the opening and
closing movements of the doors.

Figure 1: Hardware architecture of the system

RESULTS OBTAINED

Here is a representation of some of the graphical interfaces of our application:

Figure 2: The material tools of our project

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

5

Figure 3 : The enrolment window

Figure 4: The identification window with a valid fingerprint

Interpretations of the results obtained

The table below represents the different values of execution time of the sequential version on the different
data sizes, namely 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, and 600.

Table 1: Sequential version run times

Data size Execution time(ns)

50 0,11
100 0,26
150 0,39
200 0,53
250 0,67
300 0,81
350 0,95
400 1,09
450 1,23
500 1,37
550 1,51
600 1,65

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

6

The following graph is intended to evaluate the execution times of each data size when responding to the
sequential test program (Melnykov, Chen & Maitra, 2012)

Figure 5: Execution time of the sequential version

The table below represents the different values of execution time of the parallel version on the different
data sizes, namely 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, and 600.

Table 2: Parallel Version Execution Times

Data size Execution time (mn:s:ms)
50 0,05
100 0,12
150 0,18
200 0,25
250 0,31
300 0,38
350 0,44
400 0,51
450 0,57
500 0,64
550 0,7
600 0,77

The following graph is intended to evaluate the execution times of each data size when responding to the
parallel test program (Li, Peng, Su & Jiang, 2020).

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

50 100 150 200 250 300 350 400 450 500 550 600Ex
ec

ut
io

n
tim

e

Data size

Sequential version

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

7

Figure 6: Execution time of the parallel version

The table below represents the different values of execution times of the sequential and parallel versions
on the different data sizes, namely 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, and 600. The aim
is to evaluate the execution times of each data size by responding to the sequential and parallel test program
to determine the best approach (Wan & Zou, 2017).

Table 3: Sequential and parallel execution times

Data size Sequential execution time (mn:s:ms) Parallel execution time (mn:s:ms)
50 0,11 0,05

100 0,26 0,12
150 0,39 0,18
200 0,53 0,25
250 0,67 0,31
300 0,81 0,38
350 0,95 0,44
400 1,09 0,51
450 1,23 0,57
500 1,37 0,64
550 1,51 0,7
600 1,65 0,77

The graph below allows us to interpret the results obtained by the sequential and parallel implementations
of our performance test programs to determine the best approach (Dall’Olio, Curti, Fonzi, Sala, Remondini,
Castellani & Giampieri, 2021). It is very clear that the sequential program is too greedy in terms of
computation time compared to the parallel program which minimizes the computation time (Rosenberg,
Mininni, Reddy & Pouquet, 2020)

0.05
0.12

0.18
0.25

0.31
0.38

0.44
0.51

0.57
0.64

0.7
0.77

-0.2

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450 500 550 600Ex
ec

ut
io

n
tim

e

Data size

Parallel version

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

8

Figure 7: Comparison between sequential and parallel execution times

CONCLUSION

We have come to the end of our work which allows us to evaluate the execution time performance of a
single mode biometric recognition system for access control to premises secured by fingerprints.

To speed up the computation time in this system, we resorted to parallel programming, targeting more loops
in the verification module.

Our approach was therefore to parallelize all loops that are computationally intensive during the verification
of fingerprints in the database.

For this, we exploited Microsoft's Task Parallel Library, specifically exploiting the loop for and loops for
each.

On the test set performed in sequential and parallel versions in the different data sizes, namely 50, 100, 150,
200, 250, 300, 350, 400, 450, 500, 550, and 600, we can state that the results obtained by the sequential and
parallel implementations of our performance test programs allowed us to determine the best approach.
Therefore, it is very clear that the sequential program is too greedy in terms of computation time compared
to the parallel program which minimizes the computation time.

0.11
0.26

0.39
0.53

0.67
0.81

0.95
1.09

1.23
1.37

1.51
1.65

0.05 0.12 0.18 0.25 0.31 0.38 0.44 0.51 0.57 0.64 0.7 0.77

-0.5

0

0.5

1

1.5

2

50 100 150 200 250 300 350 400 450 500 550 600

Ex
ec

ut
io

n
tim

e

Data size

Comparison between sequential and parallel versions

Sequential execution time (mn:s:ms) Parallel execution time (mn:s:ms)

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

9

ACKNOWLEDGMENTS

The authors appreciate the reviewers for their contributions towards improving the quality of this research.

CONFLICT OF INTEREST DISCLOSURE

All authors declare that they have no conflicts of interest to disclose.

REFERENCES

Abdellatif, M. (2016). Accéleration des traitements de la sécurité mobile avec le calcul parallèle (Doctoral

dissertation, École de technologie supérieure).

Bopatriciat Boluma Mangata & al. (2022). Performance evaluation of a single access contol system. journal

of research in engeneering and applied sciences. Volume (7 Issue 01), p4-6.

Bopatriciat Boluma Mangata et Al.(2021). Contribution of an Embedded and Biometric System in a

Replicated Database for Access Control in a Multi-Entry Institution. International Journal of Science
and Research (IJSR), Volume (10 Issue 3), p2-5.

Dall’Olio, D., Curti, N., Fonzi, E., Sala, C., Remondini, D., Castellani, G., & Giampieri, E. (2021). Impact

of concurrency on the performance of a whole exome sequencing pipeline. BMC
bioinformatics, 22(1), 1-15.

Fryza, T., Svobodova, J., Adamec, F., Marsalek, R., & Prokopec, J. (2012). Overview of parallel platforms

for common high performance computing. Radioengineering, 21(1), 436-444.

Li, C., Peng, Y., Su, M., & Jiang, T. (2020). GPU Parallel Implementation for Real-Time Feature Extraction

of Hyperspectral Images. Applied Sciences, 10(19), 6680.

Melnykov, V., Chen, W. C., & Maitra, R. (2012). MixSim: An R package for simulating data to study

performance of clustering algorithms. Journal of Statistical Software, 51, 1-25.

Miao, Y., Tian, Y., Peng, L., Hossain, M. S., & Muhammad, G. (2017). Research and implementation of

ECG-based biological recognition parallelization. IEEE Access, 6, 4759-4766.

Ocaña, K., & de Oliveira, D. (2015). Parallel computing in genomic research: advances and

applications. Advances and applications in bioinformatics and chemistry: AABC, 8, 23.

Reumont-Locke, F. (2015). Méthodes efficaces de parallélisation de l'analyse de traces noyau (Doctoral

dissertation, École Polytechnique de Montréal).

Rosenberg, D., Mininni, P. D., Reddy, R., & Pouquet, A. (2020). GPU parallelization of a hybrid

pseudospectral geophysical turbulence framework using CUDA. Atmosphere, 11(2), 178.

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

Journal of Computing Research and Innovation (JCRINN) Vol. 7 No. 2 (2022) (pp1-10)
https://jcrinn.com : eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.271
https://doi.org/10.24191/jcrinn.v7i2.271

Copyright© 2022 UiTM Press. This is an open access article under the CC BY- SA
(https://creativecommons.org/licenses/by-sa/2.0)

10

Tavara, S., Schliep, A., & Basu, D. (2021, September). Federated Learning of Oligonucleotide Drug
Molecule Thermodynamics with Differentially Private ADMM-Based SVM. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (pp. 459-467). Springer,
Cham.

Wan, S., & Zou, Q. (2017). HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic

tree reconstruction with distributed and parallel computing. Algorithms for Molecular
Biology, 12(1), 1-10.

Williams-Young, D. B., De Jong, W. A., Van Dam, H. J., & Yang, C. (2020). On the Efficient Evaluation

of the Exchange Correlation Potential on Graphics Processing Unit Clusters. Frontiers in chemistry,
951.

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/

