
Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017)
https://crinn.conferencehunter.com

16

Article 3

Review on Program Slicing Techniques towards Program Comprehension
Application

Rozita Kadar, Naemah Abdul Wahab, Jamal Othman
Faculty of Computer and Mathematical Sciences,
Universiti Teknologi MARA Pulau Pinang Branch, Malaysia

Abstract
Presently, the software system has grown in size. One of the main challenges faced by
programmers is to keep up with thousand or million lines of source code that needs to be read
and understood. The source code is an essential resource for programmers to become familiar
with the software system. Program comprehension is important in software engineering
activities before performing maintenance tasks. One of the techniques that can assist the
programmers in comprehending software system is known as program slicing. Program slicing
is the process of extracting parts of source code programs by tracing the programs’ control
and data flow related to some data item. In this paper, we conduct the literature review on
program slicing in order to explore the direction of this method by focusing on various slicing
techniques to provide a novel idea in program comprehension application.

Keywords: Program Slicing, Program Comprehension, Software Maintenance, Source Code

Introduction
Nowadays, most of the software developers have improve their way in developing simple
source code representation to reduce the complexity of the system. This paradigm becomes
widely applied in the enhancement of large-scale application where, the size of software system
become huge and often exceeds a hundred or million lines of code. The main idea behind the
usage of source code fragment is due to the extensive reuse of the existing system into a new
system. We look into the role of program slicing technique in this paper to support the program
comprehension activities prior to performing the maintenance tasks.

Program comprehension is one of the major problem in software maintenance phase (Maletic
& Kagdi, 2008; Sasirekha &Hemalatha, 2011). The study of program comprehension is
important in order to understand the problem domain. In recent time, software system grows
in size causing additional program comprehension activities, as programmers have to face the
complexity during maintenance phase. As a result of this problem, cost and time become a
major constraints of this activity (Koushik & Selvarani, 2012; Roongruangsuwan & Daengdej,
2010). Norman and Vasilecas in (Lahtinen, Järvinen, & Melakoski-Vistbacka, 2007;
Normantas & Vasilecas, 2013) stated that 41.8% of the total effort spent on maintenance phase.

Although, much research has been done directed to the problem of program comprehension
but the studying of program comprehension remains incomplete and it should be continued in
order to produce the best strategies to improve it (Maletic & Kagdi, 2008). Most researchers
still have yet to discuss in great length on methods to facilitate software engineers in
understanding a program.

One way to assist programmers to improve their program comprehension activity is by
applying program analysis using the slicing technique. Program slicing provides mechanism to
analyze and understand the program behavior for further restructuring and refinement (Koushik
& Selvarani, 2012). It plays an important role in program comprehension, since it allows

Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017)
https://crinn.conferencehunter.com

17

programmers to focus on the relevant portions of program (Barros, da Cruz, Henriques, &
Pinto, 2011; Zhang, Zheng, Huang, & Qi, 2011). Moreover, previous works found that program
slicing has unique importance in addressing the issues of cost and time, and can be helpful in
producing effective cost and time (Koushik & Selvarani, 2012; Saleem, Hussain, Ismail, &
Mohsin, 2009). Program slicing is one of the techniques in program analysis that evaluates the
program by acquiring smaller fragments of code, therefore, this application will increases
program understanding. The technique is to find all statements in a program that directly or
indirectly influence the value of certain variable at some point in a program. The next section
discusses in details on the process of program slicing technique.

The organizations of the paper are as follows: the next section introduces the concepts of
program slicing followed by the third section where, we review the previous work by
comparing the techniques in this area. Finally, the last section will be the conclusion of the
paper.

The Concepts of Program Slicing
The goal of program slicing technique is to eliminate some part of program statements that are
unimportant, leaving only the program codes that are significance for the programmer to
evaluate. There are various aspects to be considered in slicing technique that are listed in
(Sasirekha & Hemalatha, 2011). In order to identify the relevant parts of programs, user must
specify the slicing criterion, which indicates the program characteristics concerned by the
programmer.

The discovery of slicing technique came from the work of Weiser(Weiser, 1982), which
proposes a program understanding aid. The paper (Weiser, 1982) defined this technique as a
process of breaking up any subset of the program and at the same time maintains the original
program. The slicing process required the slicing criterion, a pair c = (s, V), where s denotes a
statement at a certain point in the program while V is represents a subset of the program’s
variables. The slicing variable is dependent on the variables specified in the criteria or all
variables. The slicing point is the point of interest that can be placed either before or after a
particular statement.

The basic idea of slicing technique is derived from two approaches, which are static slicing and
dynamic slicing. A static slicing may contain statements that have no influence on the value of
the variables of the interest for the particular execution whilst a dynamic slicing takes the input
supplied to the program during its execution. In other words, it preserves the effect of the
program for a fixed input. For example, Figure 1(a) illustrates the original program while in
Figure 1(b), it shows the example of static slicing with respect to slicing criterion, c = (8, a).The
slicing criterion, c = (8, a) means the “8” is the number of the line statement and “a” is the set
of variables to be observed at statement “8”. As compared to Figure 1(c) which depicts the
result of dynamic slicing with respect to slicing criterion c = (a=-2, 8, a). Dynamic slicing
criterion, c = (a=-2, 8, a), emphasizes on the input value “-2” to the observed variable “a”. The
result in Figure 1(c) shows that the slicing program getting smaller compared to the result in
Figure 1(b). The result proves that dynamic slicing can give more contribution as compared to
static slicing in the aspect of program size.

Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017)
https://crinn.conferencehunter.com

18

1. sum=0;
2. cin>>a;
3. cin>>b;
4. if (a>0)
5. sum = sum+a;
6. if (b>0)
7. sum = sum+b;
8. cout<<a;
9. cout<<b;
10. cout<<sum;

(a)

1. sum=0;
2. cin>>a;
3.
4. if (a>0)
5. sum = sum+a;
6.
7.
8. cout<<a;
9.
10.

(b)

1.
2. cin>>a;
3.
4.
5.
6.
7.
8. cout<<a;
9.
10.

(c)

Figure 1 : (a) Example of source code program (b)Static slicing with respect to slicing criterion, c=(8,
a), (c) Dynamic slicing with regard to slicing criterion, c=(a= -2,8,a)

The slicing method is classified into two directions, which are forward and backward. The
forward direction requires tracing of the data and control dependences in forward direction.
Usually, the result of this direction is used for modification activity in maintenance tasks.
Forward is suitable for improving program comprehension because it is considered as the top-
down approach in program comprehension strategies. The backward slicing direction is
suitable for locating and tracing bugs. The output of this slicing direction is in the form of slices
statements of a program, which has some effect on the slicing criterion.

Instead of viewing program slices statements in textual-base, program-slicing technique can be
improved through visualization approach. The technique of program slicing can be enhanced
by transforming a program slices into graphical-based. Essentially, program slicing technique
is extracting parts of computer program by analyzing data and control flow dependence related
to some data. Program Dependence Graph (PDG) is one of the graphical representations that
can be used to represent data and to symbolize the control dependence of a program. In PDG,
the vertices represent program statements; and the edges correspond to data and control
dependences between them. These indicate a partial ordering on the statements of the program.
For example, Figure 2 illustrates the PDG of the example program from Figure 1. Furthermore,
this figure shows the vertices that represent the slices of program during static program slicing
execution process took place.

Another factor to be considered of slicing technique is the application of slicing. Although in
this paper we focus on program comprehension but slicing technique is also applicable in
various areas of software engineering activities such as debugging, re-engineering, testing,
model checking, verification, program segmentation and many more. In the next section, we
explore the techniques of program slicing and the application of the technique in the field of
software engineering.

Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017)
https://crinn.conferencehunter.com

19

Figure 2:The PDG of the example program from
Figure 1(a) and the grey vertices represent the slices of statement from Figure 1(b)

Program Slicing Techniques and its Application
Understanding an application is important in a successful evolution of software system and
program slicing is able to help programmers in comprehension phase for program maintenance
purposes. This section will discuss various program slicing techniques that have been proposed
in literature including static, dynamic, simultaneous, quasi and conditioned slicing as well as
its application.

A static slicing is constructed by deleting those parts of the program that are irrelevant to the
values stored in the chosen set of variables at the chosen point. The point of interest usually is
identified by annotating the program with line numbers, which identify every primitive
statement and each branch node. By exploring and understanding the slice of source code, it
allows us to find the bugs faster than the original. The dynamic slicing takes the input supplied
to the program during implementation and the slice contains only the statement that caused the
failure during the specific execution of interest. Dynamic slicing uses dynamic analysis to
identify all and only the statements that affect the variables of interest on the particular
anomalous execution trace(Korel & Rilling, 1998).

The simultaneous technique combines the use of a set of test cases with program slicing. The
method is called simultaneous dynamic program slicing because it extends and simultaneously
applies to a set of test cases the dynamic slicing technique(Korel & Laski, 1990)which produces
executable slices that are correct on a single input. Quasi-static slicing is a hybrid of static and
dynamic slicing. Static slicing examines during compile time, using no information about the
input variables of the program. On the other hand, dynamic slicing analyses the code by giving
input to the program. It is constructed at run time with respect to a particular input. A
conditioned slicing consists of a subset of program statements, which preserves the behavior
of the original program relating to a slicing criterion for any set of program executions. The set
of initial states of the program that characterize these executions is specified in terms of a first
order logic formula on the input. Conditioned slicing allows a better decomposition of the
program giving human readers the possibility to evaluate the code fragments concerning
different perspectives.

The idea behind all approaches to program slicing is to produce the simplest program possible
that maintains the meaning of the original program in connection with this slicing criterion.
The conditioned criterion is the most general of these, subsuming both static and dynamic

control dependence
data dependence

Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017)
https://crinn.conferencehunter.com

20

criteria as the special cases. The conditioned criterion consists of a set of variables, a program
point of interest and a condition. There are some drawbacks between static and dynamic slicing
methods. Static slicing needs more space, more resources and will perform every possible
execution of the program. Conversely, dynamic slicing needs less space and is specific to a
program execution. Dynamic slices are smaller than static slice(Binkley et al., 2005). For
complete program understanding, one execution of the program is not enough. Hence, the
Quasi static slicing method was first introduced by Venkatesh(Roongruangsuwan & Daengdej,
2010). In Quasi slicing, the value of some variables are fixed and the program is analyzed while
the value of other variables vary. The behaviour of the original program is not changed with
respect to the slicing criterion. Slicing criteria includes the set of variables of interest and initial
conditions, therefore, quasi slicing is called as Conditioned slicing(Binkley et al., 2005). This
is an efficient method for program comprehension.

Existing Works on Program Slicing Technique
This section explains the existing works on program slicing in supporting program
comprehension. The discussion is based on selected papers focusing on the strengths and
weaknesses of the work as well as the approaches, slicing criterion and the output
representation.

The first work proposed by Servant & Jones (2013) uses the history slicing method to discover
the historical change events to the source code. The proposed work is useful for understanding
source code growth, however, it consumes much time when applying the proposed work. The
output representative is in a set of lines of interest contains all their snap-shots in all the past
revisions in which they were modified. The work provides a tool namely Chronos. Santelices
et al. (2013) uses the quantitative slicing approach focusing on novice users to quantify the
relevance of each statement in a slice. This method help user focus their attention on the part
of slices that matter the most. The study is able to assess the potential impact of changing
location for a given score to quantifies the lines but the method is ambiguous and just by
estimation. The output representation is in a form of slices and source code snippets. They also
develop a tool called SensA.

Jain & Poonia (2013) combined the static and dynamic slicing method to reduce the time taken
in slicing process. The output representation is in slices and source code snippets. The tool is
not available in this work. Maruyama et al. (2012) applied the program slicing technique to
discover the historical change events to the operation of source code by replaying recorded past
code changes. The output is in a set of lines of interest contains all their snap-shots in all the
past revisions in which they were modified. Their study are useful for understanding source
code growth, nevertheless, the implementation of their slicing task is time-consuming. On the
other hand, the study proposed by Zhang et al. (2011) perform the dynamic slicing according
to the calling relationship of the program. The work proposed the method called Structured
Dynamic Program Slicing (SPS) that use the register or memory address in certain instruction
of the program as slicing criterion. The work extracts a part of code, which influenced by users,
and organizes the result using the call graph of the program. The summary of the works are
shown in Table 1.

Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017)
https://crinn.conferencehunter.com

21

Table 1 Summary of Existing Works on Program Slicing Technique

Authors
Method of Slicing Direction Technique of

Slicing
Tool

Slicing Criterion

(Servant & Jones,
2013)

History Slicing Backward Static Chronos Set of lines of interest

(Santelices et al., 2013) Quantitative Slicing Hybrid Hybrid SensA The score or probabilities
of the set of interested lines

(Jain & Poonia, 2013) Mixed S-D Slicing Hybrid Hybrid N/A Variables

(Maruyama et al.,
2012)

History Slicing Hybrid Static Operation
Slice Replayer

Operations change of
interest

(Zhang et al., 2011) SPS - Structured
Dynamic Program
Slicing

Forward Dynamic SPS The register or memory
address in certain
instruction of the program

Conclusion
Program slicing has been applied to a range of maintenance tasks. This paper attempts to
provide the insight behind computing a program slice and reflects on several types of program
slicing techniques that have been written. This study also aims to recommend excellent sources
for further information on program slicing. Finally, we offers a direction for future work on
program slicing research. We plan to apply this technique taking into consideration the use of
domain knowledge in object-oriented programs. Program slicing of such programs is more
complicated due to global and local variables, reference parameters, procedure call/return, and
recursion. By extracting, the elements in OOP source code and represent it into a form of
knowledge representation, this method will be able to enhance a successful evolution of
program slicing.

References
Barros, J. B., da Cruz, D., Henriques, P. R., & Pinto, J. S. (2011). Assertion-based slicing and

slice graphs. Formal Aspects of Computing (Vol. 24). http://doi.org/10.1007/s00165-
011-0196-1

Binkley, D., Danicic, S., Gyimóthy, T., Harman, M., Kiss, A., & Korel, B. (2005). Minimal
slicing and the relationships between forms of slicing. In Source Code Analysis and
Manipulation, 2005. Fifth IEEE International Workshop on (pp. 45–54). IEEE.

Jain, M. S., & Poonia, M. S. (2013). A New approach of program slicing: Mixed SD (static &
dynamic) slicing. International Journal of Advanced Research in Computer and
Communication Engineering Vol, 2.

Korel, B., & Laski, J. (1990). Dynamic slicing of computer programs. Journal of Systems and
Software, 13(3), 187–195.

Korel, B., & Rilling, J. (1998). Dynamic program slicing methods. Information and Software
Technology, 40(11), 647–659.

Koushik, S., & Selvarani, R. (2012). Review on Cost Effective Software Engineering Using
Program Slicing Techniques. In Proceedings of the International Conference on
Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in
Visakhapatnam, India, January 2012 (pp. 631–637). Springer.

Lahtinen, E., Järvinen, H.-M., & Melakoski-Vistbacka, S. (2007). Targeting program

Journal of Computing Research and Innovation (JCRINN) Vol 2, No 1 (2017)
https://crinn.conferencehunter.com

22

visualizations. ACM SIGCSE Bulletin, 39(3), 256.
http://doi.org/10.1145/1269900.1268858

Maletic, J. I., & Kagdi, H. (2008). Expressiveness and effectiveness of program
comprehension: Thoughts on future research directions. 2008 Frontiers of Software
Maintenance, 31–37. http://doi.org/10.1109/FOSM.2008.4659246

Maruyama, K., Kitsu, E., Omori, T., & Hayashi, S. (2012). Slicing and replaying code change
history. Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering - ASE 2012, 246. http://doi.org/10.1145/2351676.2351713

Normantas, K., & Vasilecas, O. (2013). A Systematic Review of Methods for Business
Knowledge Extraction from Existing Software Systems, 1(1), 29–51.

Roongruangsuwan, S., & Daengdej, J. (2010). A test case prioritization method with practical
weight factors. J. Software Eng, 4, 193–214.

Saleem, M., Hussain, R., Ismail, V., & Mohsin, S. (2009). Cost effective software
engineering using program slicing techniques. In Proceedings of the 2nd International
Conference on Interaction Sciences: Information Technology, Culture and Human (pp.
768–772). ACM.

Santelices, R., Zhang, Y., Jiang, S., Cai, H., & Zhang, Y. (2013). Quantitative program
slicing: Separating statements by relevance. 2013 35th International Conference on
Software Engineering (ICSE), 1269–1272. http://doi.org/10.1109/ICSE.2013.6606695

Sasirekha, N., & Hemalatha, M. (2011). Program Slicing Techniques and its Applications.
International Journal of Software Engineering & Applications, 2(3), 50–64.

Servant, F., & Jones, J. a. (2013). Chronos: Visualizing slices of source-code history. 2013
First IEEE Working Conference on Software Visualization (VISSOFT), 1–4.
http://doi.org/10.1109/VISSOFT.2013.6650547

Weiser, M. (1982). Programmers use slices when debugging. Communications of the ACM,
25(7), 446–452.

Zhang, R., Zheng, Y., Huang, S., & Qi, Z. (2011). Structured Dynamic Program Slicing.
2011 International Conference on Computer and Management (CAMAN), 1–4.
http://doi.org/10.1109/CAMAN.2011.5778759

